
Mathematics Behind Blockchain

Edward Bickerton

January 2022

Contents

1 Introduction 2

2 Cryptographic Hash Functions 3
2.1 Introduction . 3
2.2 SHA . 4
2.3 Python example . 4

3 Digital Signatures 5
3.1 Introduction . 5
3.2 RSA crypto-system . 6

3.2.1 Encryption . 6
3.2.2 Decryption . 7
3.2.3 Signing messages . 7

3.3 Python demonstration . 7

4 Blockchain 9
4.1 Introduction . 9
4.2 Oldest Blockchain . 9

5 Merkle Trees 11
5.1 Introduction . 11
5.2 Bitcoin’s Merkle trees . 11
5.3 Python demonstration . 13
5.4 Full nodes vs. SPV nodes . 14

6 Proof of Work 16
6.1 Introduction . 16
6.2 Hashcash . 16
6.3 Python demonstration . 17

7 Conclusion 20

1

Chapter 1

Introduction

In this document I will go over some of the cryptographic ingredients which come
together to form the loosely defined and rapidly changing space of blockchain tech-
nology. My personal focus is on Bitcoin (I use Bitcoin to refer to the decentralised
network and bitcoin or BTC to refer to the asset/currency), mainly because in my
opinion its purpose is simpler and thus easier to define compared to smart contract
platforms such as Ethereum, only time will tell if these blockchains have a place in
the economy. However, much of what is discussed applies to, not only blockchain
technologies but also broader technologies in our internet age.

2

Chapter 2

Cryptographic Hash Functions

2.1 Introduction

Cryptographic hash functions are a fundamental building block in cryptography
and are used extensively in Bitcoin. The fingerprint of a person is an apt analogy
to the hash of a digital document in the following sense; the hash of a digital
document:

• is characteristic of the document,

• is unique to the document,

• is small no matter it’s size, and

• gives you no information about the document itself.

The cryptographic hash function takes data of arbitrary size as input, sometimes
referred to as the message; and the output is a bit array of a fixed size referred
to as the input’s hash value or sometimes the message digest. Practically this can
be thought of as a function from N to some finite subset of N (i.e. {1, . . . , 2n}
where n is the length of the bit array). These functions are deterministic, meaning
that the same message always gives the same hash value. They are one way
functions, meaning, given a hash value it is computationally unfeasible to find a
message which has this hash value and ideally the most efficient way of finding
such a message would be a brute force attack i.e. guessing a random message
and computing its hash value to compare it to the target value, repeating until
successful.

3

2.2 SHA

SHA stands for secure hash algorithms and are a family of cryptographic hash
functions published by the National Institute of Standards and Technology. The
most commonly used function is SHA256, but this name is slightly ambiguous.
There have been four generations of SHA, SHA-0 has an undisclosed significant
flaw, SHA-1 and 2 were both designed by the NSA and SHA-3 (the most current
version, also known as Keccak) was chosen in 2012 after a public competition.
So the 256 in SHA256 simply refers to the length of its bit array output. The
design of these functions are outside the scope of this project, but SHA-3 uses the
sponge construction, meaning data is absorbed into the sponge and then the result
is squeezed out.

2.3 Python example

The following Python code demonstrates that changing the input of a hash func-
tion, even only slightly, yields a completely different output. On a mac, if you
open the terminal app and type python (python and hashlib should already be
installed) you will be able to type and execute code.

>>> from hashlib import sha3_256

>>> def string_hash(string):

... return sha3_256(string.encode()).hexdigest()

...

>>> string_hash("A specter is haunting the modern world, the specter of

crypto anarchy.")

"dba25e3027b573af12e8337433c3ad102e884f95e9bb8d823b5492d80d5ce1c5"

>>> string_hash("a specter is haunting the modern world, the specter of

crypto anarchy.")

"e31a3ea917466318369e5e979b4eaf02aa253b094cf153d0cf0b3ef7aafaae08"

The second string differs by only its first character and yet their hash values show
no apparent correlation. Note that the hash outputs are given in hexadecimal, not
the familiar decimal number system (using the sixteen characters: 0-9 and a-f).
This is done so as to use less characters when displaying very large numbers.

4

Chapter 3

Digital Signatures

3.1 Introduction

Signatures in the traditional sense are less than perfect. Their purpose is to prove
commitment by a specific person to a specific statement (or contract). However,
at least for my signature, anyone who stares at it for long enough could quite
easily reproduce it on any document they like. Also the traditional signature has
no strong defence against the document being altered after it has been signed.

Digital signatures offer a much better solution to the same problem regular signa-
tures address. Only the owner of a private key can produce the signature. It is
much easier for an individual to defend a private key than it is for them to make
their written signature sufficiently complex so as to make it non reproducible by
anyone else. Digital signatures also have the added benefit that the signature
depends on the document being signed (and not just the signer), thus the docu-
ment cannot be altered after it has been signed while maintaining a valid signature.

In the next section I will go through the RSA crypto-system. However, Bitcoin
actually uses the elliptic curve digital signature algorithm. In the case of Bitcoin,
digital signatures are used to ensure that only the owner of some bitcoin can write
and broadcast a valid transaction spending that bitcoin, which will be accepted
by the network and (hopefully) included into a block.

5

3.2 RSA crypto-system

The RSA crypto-system was publicly described by Ron Rivest, Adi Shamir and
Leonard Adleman in 1977 (GCHQ had developed an equivalent system in 1973).
I use the word crypto-system because it allows for encryption and decryption as
well as producing digital signatures. Each user has both a private and public key,
naturally the private key is kept secret and the public key is made public. The
private key is used to sign and decrypt messages, while the public key is used to
verify the validity of signatures and to encrypt messages. Both keys are tuples as
such:

• Private Key: (p, q) where p and q are large primes.

• Public Key: (N, e) where N = p× q and e = 65537.

As you can see, the public key can be produced from the private key but the reverse
is not true since there is no efficient method for finding the factors of N . It’s worth
noting that p and q should be so large (say 512 bits) that it is implausible to guess
them in the same way an attacker might guess a weak password.

3.2.1 Encryption

Encryption is done by the sender of a message using the recipients public key.
First the message needs to be converted to an integer m, there are many ways of
doing this for example replacing A with 01, B with 02 and so on (note: m must
satisfy 0 ≤ m < N). The ciphertext c, (the encrypted message) is then produced
by calculating:

c = me (mod N) (3.1)

The system depends on there being no efficient method for calculating the discrete
logarithm, i.e. there is no known way of finding m from c, e and N .

6

3.2.2 Decryption

Once the recipient has received the encrypted message they can use their private
key to decrypt it. Let ϕ be Euler’s totient function, that is the number of positive
integers up to a given integer n that are relatively prime to n. We have that:

ϕ(N) = (p− 1)(q − 1) = N − p− q + 1 (3.2)

and that ϕ(N) is very hard to compute without knowing p and q. To decrypt c
we must find the multiplicative inverse of e modulo ϕ(N). That is d such that,
for some integer k, e× d = k × ϕ(N) + 1 which can be found using the extended
Euclidean algorithm, then we have that:

cd = (me)d = me×d = mk×ϕ(N)+1 = (mk)ϕ(N) ×m = m (mod N) (3.3)

since by Euler’s totient theorem (mk)ϕ(N) = 1 (mod N). Once m is found it can
then be converted back into the original message.

3.2.3 Signing messages

Anyone with a private key can use it to sign any message (or digital document)
they choose, to verify the validity of the signature all that is required is the corre-
sponding public key and the original message. So long as the private key is kept
private and is known only by the intended user(s), the digital signatures produced
by the private key can be trusted. Let h be the hash of the message as an integer,
then the signature s is given by s = hd (mod N). Where d is as before and thus can
only be calculated by the owner of the private key. The validity of the signature
can then be verified by calculating se (mod N) which will give h since, again, by
Euler’s totient theorem:

se = (hd)e = he×d = hk×ϕ(N)+1 = (hk)ϕ(N) × h = h (mod N), (3.4)

where k is some integer.

3.3 Python demonstration

The python files used below can be found on my GitHub account Satsuma-LN in
the RSA-cryptosystem repository. There is even a graphical user interface to go
with rsa backend.py.

7

8

Chapter 4

Blockchain

4.1 Introduction

Put simply a blockchain is an append only ledger (or database) in which new data
is added in blocks. Each new block contains the hash of the previous block, and so
blockchains are resistant to retroactive modification since changing data in any of
the previous blocks would alter its hash value, rendering all blocks made after said
block invalid. I recommend visiting https://demoblockchain.org/blockchain for an
interactive demonstration of blockchain. Crucially, the integrity of a blockchain
depends heavily on the integrity of the hash function it uses.

4.2 Oldest Blockchain

The term blockchain gets misused, often it gets used to describe the whole cryp-
tocurrency (or distributed computing) space. Interestingly the longest running
blockchain does not belong to a decentralised protocol such as Bitcoin, but to a
centralised company founded by Stuart Haber and W. Scott Stornetta in 1994
known as Surety. The company provides digital tamper evident seals for digital
documents in a trust minimising way. Interestingly, part of their solution depends

9

on making a hash value both widely available and widely witnessed, which they
achieve by publishing it in The New York Times which is archived all over the
world. Anyone (even non-customers) can independently verify the integrity of a
document with one of their seals because this hash depends on every single doc-
ument Surety has sealed up to that point. Importantly this is done without the
users having to reveal their documents, they simply provide Surety with the hash
of the document they wish to seal.

10

Chapter 5

Merkle Trees

5.1 Introduction

Merkle trees offer a method for efficiently verifying the integrity of data even when
its source is untrusted, given that the Merkle tree root is obtained from a trusted
source. Patented by Ralph Merkle in 1979 (the inventor of cryptographic hashing)
merkle trees depend heavily on the integrity of the hash function it uses. In the
following sections I will look at Merkle trees from the context of how they are used
in Bitcoin.

5.2 Bitcoin’s Merkle trees

The diagram above is a slightly altered version of the diagram from the Blockchain
chapter. It is somewhat misleading because, in the case of Bitcoin the transaction
data (the data which is used to determine its users’ balances) is not actually stored
in the blockchain itself. This may sound alarming, but Merkle trees allow for an
efficient method for creating a fingerprint of all of the transactions in the form of
a Merkle tree root which is stored in the blockchain.

11

The diagram above shows what is contained within Bitcoin’s block headers. Since,
a hash of only the previous block header is included in Bitcoin’s block headers,
and not a hash of the entire previous block, it is perhaps more precise to refer
to the series of block headers as Bitcoin’s blockchain, leaving out the transaction
data.

Above is an illustration of how a Merkle tree root is constructed for eight trans-
actions (depending on how busy the Bitcoin network is, a block may contain a
few thousand transactions). The tree is a binary tree, meaning each node has at
most two child nodes. The leaf nodes are formed by taking the hash of their cor-
responding transaction. Then the parent node is constructed by taking the hash
of the concatenation of the two child nodes’ hashes.

12

5.3 Python demonstration

In the following, the hash function I use is based off of SHA256, only converted
to decimal and taking only the first eight digits. You would not want to use
this in any serious setting due to the increased chance of a hash collision. Both
the blockchain project.py and merkle tree demo.py files from my GitHub account
Satsuma-LN in the Mathematics-behind-blockchain-project repository and the bi-
narytree python module are needed to go through the demonstration.

13

Above, in the second Merkle tree you can see that changing transaction two from
‘Pablo sends Kacey 8 BTC’ too ‘Pablo sends Kacey 12 BTC’ is enough to change
the Merkle tree root from 4555231 to 4660992.

You may be thinking, if a fingerprint of the transaction data is all that’s required,
why not just concatenate all of the transaction data and then include its hash in
the block header. The next section attempts to answer this question.

5.4 Full nodes vs. SPV nodes

A Bitcoin full node keeps a copy of every transaction since Bitcoin’s inception in
2009. This takes up about 400 GB of hard drive space and to buy the necessary
hardware costs two to three hundred pounds (see projects such as getumbrel or
raspiblitz). For many people this is infeasible, whether because of internet access
limitations or because their primary computer is a smart phone. SPV (simple

14

payment verification) nodes on the other hand keep a copy of only the block
headers which is light weight enough to be run on a smart phone; and because
of the nature of the proof of work system Bitcoin uses, the user has a copy of all
of the Merkle tree roots from a trusted source. However, SPV nodes come with
a trade off. The user is still dependent on a full node (which can be run by an
untrusted entity), they rely on other users of the network to ensure its integrity
and there are some negative privacy implications of using an SPV node instead of
a full node.

Above is a demonstration of how, say Eve can verify that Quinn has sent her two
bitcoins, while Eve only has access to the Merkle tree root from a trusted source.
With the hash values highlighted in green (and supplied by a full node) and the
transaction data (highlighted in yellow), Eve can reconstruct the Merkle tree root
and then compare it to the value on her SPV node. If the two values agree, Eve
can be sure that the transaction has been included in the block.

15

Chapter 6

Proof of Work

6.1 Introduction

This section deals with what is arguably the most fascinating part of Bitcoin. It
binds time and energy and thus value to the digital world. Proof of work offers a
way for someone to verifiably prove to anyone that a certain amount computational
work has been done. The key features of a Proof of Work system are:

• the work (or computation) should be hard but not infeasible; and

• it should be easy to verify that work has been done.

In the next section I will go through Hashcash, which is a system proposed by
Adam Back in 1997 to reduce email spam by incurring on the sender a certain
computational cost. Bitcoin and other cryptocurrencies have adopted the same
proof of work system used in Hashcash. However, in the case of Bitcoin proof
of work is used to ensure the integrity of a peer to peer distributed ledger by
mandating a huge amount of resources be required to update this ledger.

6.2 Hashcash

From its name it is not surprising that Hashcash relies heavily on the cryptographic
hash function, however there is no token or currency associated to the system that
a user can own or trade. The concept of Hashcash is quite elegant, the sender
would find and add a cryptographic nonce (number once) to their message such
that the hash of the message satisfies certain properties. The receiver can then
simply filter out the emails whose hash does not satisfy these properties. The
idea being that scammers whose business model relies on sending spam emails to
thousands of recipients cheaply would not be able to afford the processing power

16

to find a valid proof of work for each email. However legitimate senders of email
would not mind waiting a couple of seconds while their computer found a valid
proof of work before sending their message.

To determine what these properties of the hash should be it will be useful to
think of a hash function as such:

hash : N −→ {1, 2, 3, . . . ,Ψ} ⊂ N,

where Ψ is astronomically large, and ∀m,n ∈ N, such that m ̸= n, |m − n|
tells you no information about |hash(m) − hash(n)|. Clearly this function is not
injective because the domain is larger than the codomain but if we assume our
hash function is ideal then we should have that for m,n ∈ N chosen randomly the
probability that hash(m) = hash(n) is equal to the probability of two randomly
chosen elements from the codomain being equal, namely

1

Ψ
.

This probability is so small that it is highly improbable for anyone to find m ∈ N
such that hash(m) = hash(n) when m ̸= n. For example, in the cryptographic
hash function SHA256 (which is widely used in Bitcoin) we have Ψ = 2256 ≈ 1077.
For scale, estimates for the number of atoms in the universe range from 1078 to
1082. However, if we let D ∈ {1, 2, 3, . . . ,Ψ} then the probability that a randomly
chosen m ∈ N satisfies hash(m) ≤ D is

D∑
i=1

P(hash(m) = i) =
D∑
i=1

1

Ψ
=

D

Ψ
,

thus giving us a way of varying the difficulty of finding such an m. We can increase
the difficulty by decreasing D and decrease the difficulty by increasing D.

Hopefully you have some ideas about how the hash function could be used to
construct a Proof of Work system, in the next section I’ll try and demonstrate
how Hashcash works using some Python code.

6.3 Python demonstration

In the following implementation I measure difficulty by the number of leading ze-
ros a message’s hash is required to have to be considered legitimate and not spam.
It’s worth noting that the computer finds a nonce which produces a valid proof
of work, by producing a random number, appending it to the email, calculating

17

its hash and checking if it has at least the desired number of leading zeros. If it
doesn’t it will repeat this process again until it finds a valid nonce. To run through
the demonstration you’ll need the blockchain project.py file (found on my GitHub
account Satsuma-LN in the Mathematics-behind-blockchain-project repository).

>>> import blockchain_project as bp

>>> bp.Hashcash_Message.find_appropriat_difficulty()

A difficulty of 5 should require at least 2 seconds of work from this

computer.

>>> recipient = "Timothy C.May"

>>> message = "Privacy is the power to selectively reveal oneself to

the world."

>>> test_hashcash_msg = bp.Hashcash_Message(

... recipient,

... message,

... difficulty=5,

... verbose=True)

It took 302999 attempts to find a valid nonce.

>>> print(test_hashcash_msg)

Recipient: Timothy C.May

Nonce:

98958446389545255982712332171491307028228641815471035144663979947670924565459

Message:

Privacy is the power to selectively reveal oneself to the world.

>>> nonce =

"98958446389545255982712332171491307028228641815471035144663979947670924565459"

>>> bp.Hashcash_Message.verify_proof_of_work(recipient, nonce, message)

Valid proof of work with difficulty 5, the hash is:

00000b8d1b2cf5af6f8e796ee1d16ddd1f5a5791d0b43e36a65ec658940a0aef

True

18

Requiring more leading zeros has the same effect as decreasing D from the previous
section, thus increasing the difficulty and hence time taken to find a valid nonce.
I recommend playing around with the last function call, if you change any one of
the three inputs (recipient, nonce or message) you should find that the hash no
longer has enough leading zeros, and thus would be considered spam by the email
filter.

>>> bp.Hashcash_Message.verify_proof_of_work(

... "Eric Hughes",

... nonce,

... message)

WARNING: No work done. This could be spam. The hash is:

ad19d4c4b266e2f67e3333d6584c2a0c7c551aa88b3da2fe834968069dcc15ce

False

>>> bp.Hashcash_Message.verify_proof_of_work(

... recipient,

... str(int(nonce) + 1),

... message)

WARNING: No work done. This could be spam. The hash is:

4ee7b79977214ec1e50fafd30fdcf470a30b99e23edf760ca717917f8b1feecc

False

>>> bp.Hashcash_Message.verify_proof_of_work(

... recipient,

... nonce,

... "Buy this really good lawn mower!")

WARNING: No work done. This could be spam. The hash is:

ba18e2b44cc393acd93888d25e81aebbff94055831224159730a255ed65310aa

False

19

Chapter 7

Conclusion

Bitcoin is a vast topic, touching on a diverse set of fields; computer science, mathe-
matics, economics, anthropology and I’m sure there are more. There is an internet
meme amongst Bitcoiners that Bitcoin is a rabbit hole whose bottom has not been
found yet. I hope that this document sparks some interest in the reader and com-
plements some of the educational content already out there. While writing this I
found Andreas M.Antonopoulos’ book ‘Mastering Bitcoin’ especially helpful.

20

